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Abstract
By assuming a self-similar structure for Kelvin waves along vortex loops with
successive smaller scale features, we model the fractal dimension of a superfluid
vortex tangle in the zero temperature limit. Our model assumes that at each step
the total energy of the vortices is conserved, but the total length can change. We
obtain a relation between the fractal dimension and the exponent describing
how the vortex energy per unit length changes with the length scale. This
relation does not depend on the specific model, and shows that if smaller length
scales make a decreasing relative contribution to the energy per unit length of
vortex lines, the fractal dimension will be higher than unity. Finally, for the
sake of more concrete illustration, we relate the fractal dimension of the tangle
to the scaling exponents of amplitude and wavelength of a cascade of Kelvin
waves.

PACS numbers: 47.53.+n, 67.25.dk

1. Introduction

Turbulence in helium II, or superfluid turbulence, consists of a tangle of quantized vortex lines
[1, 2]. Until recently, in most experiments superfluid turbulence was created in superfluid
helium at rest in the presence of a heat flux, the so-called counterflow [3, 4], an interesting
problem of non-equilibrium physics [5, 6]. More recently, superfluid turbulence was generated
by agitating the liquid helium using grids or propellers [7–9]. Particularly interesting is the
case in which the temperature T is small enough (T < 1K) that the normal fluid fraction of
helium II is negligible; hence, viscous dissipation and mutual friction play no role. In this
low temperature limit, superfluid turbulence takes its purest form: a tangle of reconnecting
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vortex filaments which move under the velocity field of each other. The importance of vortex
reconnections, first recognized by Schwarz [10] and later proved by Koplik and Levine [11],
cannot be underestimated [12, 13]. Vortex reconnections randomize the vortex tangle and
initiate the physical mechanisms of the decay of the tangle’s kinetic energy in the absence
of viscous losses. The first mechanism is the direct conversion of energy into sound in the
form of rarefaction pulses at reconnecting events, as predicted by the condensate nonlinear
Schroedinger equation model [14]. The second mechanism is a cascade of Kelvin waves of
shorter and shorter wavelengths [15–23] triggered by vortex reconnections. This process of
generation of small scales can proceed without significant kinetic energy losses to spatial scales
which are small enough that the kinetic energy of the highly curved and cusped fragments of the
vortices is radiated away as sound [24–27] (phonon emission); that is to say, ultimately kinetic
energy becomes heat. In this regime, one expects the vortex tangle to exhibit fractal features,
if the mentioned processes act in a self-similar way on several orders of spatial lengths. The
idea that at very low temperatures the energy can be released by vortex reconnections, from
smaller and smaller structures, and hence it increases the twisting and the winding of the
superfluid turbulence, was originally suggested a long time ago by Feynman in his pioneering
article on the applications of quantum mechanics to liquid helium [28], before we knew about
fractals or the Kelvin wave cascade, and was explored in detail by Svistunov [15].

Here we propose simple geometrical models of the fractal dimension of superfluid
turbulence, which represent reconnections and interactions between vortex loops and the
subsequent formation at the next generation of new vortex loops and Kelvin waves on
them. The models are too simple to be dynamically realistic, but sufficiently appealing
for a qualitative understanding of some physical features influencing the fractal dimension.
We stress that we are not attempting to develop a theory of the Kelvin wave cascade based on
actual vortex dynamics, but we shall move with simpler considerations. Our motivations are
the growing interest in superfluid turbulence at very low temperatures [29, 30], and previous
remarks on the fractal nature of superfluid turbulence. In particular we recall the work of
Kivotides et al [31], who numerically determined a fractal dimension larger than unity (but at
finite temperature, not in the limit of absolute zero which we consider here), of Nemirovskii
et al [32] (who considered the influence of the possible fractal dimension of the tangle on
the energy spectrum of the turbulent velocity field) and of Jou et al [33] (who proposed an
heuristic form of Vinen’s generalized equation for the dynamics of a fractal vortex tangle).

Our aim is to model the fractal dimension of the tangle under the condition of constant
energy, but separating the scaling behaviour of vortex length and of vortex energy during the
transfer of line length to smaller and smaller length scales. The underlying physical idea is
that the energetic contributions of very close parts of the vortex lines may interfere with each
other, thus leading to a non-additive global result for the total energy of the loop.

First of all, we derive a general relation between the fractal dimension of the hierarchy
of self-similar vortex loops and the behaviour of the vortex energy per unit length at different
length scales. Afterwards, in order to be more concrete and explicit, we propose two simple
models of hierarchies of self-similar loops, whose behaviour mimics in a simplified way the
features of a cascade of Kelvin waves.

Our simple models are partially inspired to the well-known β-model for classical
intermittent turbulence [34–37] and include the influence of geometrical and energetic aspects
on the fractal dimension. We are not aware of applications of the β-model of classical
turbulence to quantum turbulence. We think that this model can be useful to grasp some
qualitative transfer amongst different length scales. Our approach differs from that of
Svistunov [15] in that it takes a less detailed and less quantitative form, but it allows a
simpler and more intuitive view of the complicated process in question.
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2. Fractal dimension and behaviour of the vortex energy per unit length
at different scales

Our aim is to look for an expression of the fractal dimension DF of the vortex tangle in
terms of the microscopic properties previously mentioned, namely vortex length distribution,
amplitude and wavelengths of Kelvin waves, and energy density per unit length. To obtain the
fractal dimension DF of the vortex tangle, we use the standard definition [35, 38]

DF = − lim
n→∞

log(Nn/N0)

log(ln/ l0)
, (2.1)

where Nn is the number of steps along a curve (or the number of objects of a given size) and
ln is the length of a single step (or the size of a given object).

We assume that the tangle can be statistically described as a self-similar hierarchy of
loops, whose forms will be discussed in section 3. The generation with n = 1 corresponds to
the level of the biggest vortices, which become more abundant and smaller for increasing n.
We call Nn the number of vortices at the nth generation, ln the size of each loop and E′

n the
energy of each loop.

Although the specific expression for the fractal dimension depends on the details of the
model, we express the fractal dimension in terms of the energy per unit length at several
scales. Note that in our analysis DF is a property of the ensemble of self-similar loops, not
of a single loop. In fact, the individual loops are assumed to be regular lines, and not fractal
lines. Thus, our fractal dimension characterizes the self-similarity properties of the tangle and
not of individual vortex lines.

Before proposing an explicit model of hierarchies of vortex loops, we relate the fractal
dimension defined geometrically in (2.1) with the variation of the energy per unit length at
different length scales.

We assume that E′
n ∝ lα

′
n , where α′ is a constant scaling exponent; this means that the

energy per unit length is

E′
n/ ln ∝ lα

′−1
n . (2.2)

Therefore, if α′ > 1 the contribution to the energy per unit length decreases for lower length
scales (shorter ln); the opposite is true for α′ < 1. If α′ = 1, then the energy per unit length
is the same at each length scale. In principle, the exponent α′ does not depend on the fractal
dimension (2.1), but it becomes related to DF if we assume the condition of constant total
energy at the different loop generations, as mentioned in the introduction.

According to the previous definitions, the total energy En at the nth loop generation is
given by En = NnE

′
n. Then the condition that the total energy is independent of n can be

expressed by

En = En+1; hence, Nnl
α′
n = Nn+1l

α′
n+1. (2.3)

If n is large enough, equation (2.1) implies that ln ∝ N
−1/DF
n ; thus, equation (2.3) leads to

N1−(α′/DF )
n = N

1−(α′/DF )

n+1 . (2.4)

In order that this equality is true for any n, one must have that DF = α′. This result shows
the strong connection between the energetic features of the tangle and its geometrical structure,
independently of the detailed form of the loops in the hierarchy. When the contribution to
the energy per unit length of the smaller length scales is smaller than the contribution of the
larger scales, then DF > 1, whereas in the opposite case DF < 1. The case DF < 1 seems
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physically unacceptable because it would imply that vortex line fragments in objects perhaps
similar to Cantor’s dust, which would violate the condition that the vorticity is solenoidal.
This result would be supported by the numerical simulation of Kivotides et al [31]. The only
acceptable situation is that the larger length scales contribute more to the energy per unit length
than the smaller length scales. In view of the meaning of α′, we write the fractal dimension
(2.1) as

DF − 1 = lim
n→∞

log(E′
n/ ln)

log(ln)
(2.5)

which, by using ln ∝ N
−1/DF
n , can also be written as

1 − DF

DF

= lim
n→∞

log(E′
n/ ln)

log(Nn)
. (2.6)

In the next section, we shall introduce a model of loop generations which relates the fractal
dimension to the amplitude and the wavelength of the Kelvin waves.

3. Geometric and energetic assumptions

We assume that, as the mutual interaction of vortices induces the formation of helical Kelvin
waves along the vortex line which also undergo breaking and reconnection processes, the
tangle can be described as an ensemble of self-similar objects. Neglecting boundaries, we
assume that these objects are closed vortex loops. Svistunov [15] has also considered the same
point of view, but with different transformation rules than those we consider here, as we shall
discuss below.

The loops can be entangled among themselves in complex topological ways [39]. Here,
we focus our attention only on geometrical properties such as vortex length, vortex number,
amplitude and wave-number of Kelvin waves, and energy per unit length. We do not consider
the topological details of the vortex entanglement.

We envisage that the generation of vortex loops takes place according to the following
rules.

(i) We take as reference configuration a collection of N0 vortex loops of length L0 = 2πR0,
where R0 is the average curvature radius of the loop, along which an helical structure
of N ′

0 helical turns lies, all turns being of radius R′
0. This structure models in a simple

way the formation of Kelvin helical waves along vortices, where R′
0 is the amplitude and

h0 = L0/N
′
0 is the wavelength of waves.

(ii) The next generation is assumed to be composed of N0r smaller vortex loops (where r is a
multiplication parameter) of length L0/β (where β is another parameter). The following
generation consists of N0r

2 loops of lengths L0/β
2, and so on. Thus, the nth generation

is composed of Nn = rnN0 vortex loops of lengths Ln = L0/β
n (see figure 1). Note that

the generation of smaller vortex loops at the nth generation comes from the interactions
and reconnections among vortex loops of (n − 1)th generation (the dots in each loop of
figure 1 denote the reconnection points). The parameters r and β thus depend on the
details of the dynamics.

(iii) Besides the above set of rules which determine the number Nn of loops in the nth generation
and the average radius Rn of the main circle of the loop, it is necessary to give a second
set of rules for N ′

n and R′
n, which are the number of helical turns and the average radius
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Figure 1. Each vortex loop at nth generation with the average curvature radius Rn generates r = 2
vortex loops at (n + 1)th generation, and so on at the next generation. In the figure a constant
number of helical turns N ′

n = N ′
0 (α = 0) is assumed, while the radius R′

n decreases according to
the rule R′

n = R′
0/β

γn.

of each turn. We interpret R′
n as the amplitude of a Kelvin wave and hn = Ln/N

′
n as

the wavelength. We assume that each loop has N ′
n = N ′

0(r
′)n helical turns, and that the

radius of the helical structure at the nth generation scales as R′
n = R′

0/β
′n, i.e. it scales

in a different proportion than the curvature radius of the total loop. We introduce two
scaling coefficients α and γ , setting r ′ = rα and β ′ = βγ (in figure 1, for the sake of
simplicity, it is assumed that the number of helical turns in each vortex loop is constant,
that is α = 0).

(iv) In the breaking and reconnection processes the total energy remains unchanged because
at the considered length scales there is no friction, hence no energy dissipation. Thus,
we impose that En+1 = En for all values of n. This assumption has a limiting length
scale because at some very small length scale sound radiation becomes relevant and the
fractalization process stops.

We stress that the first three rules are not supposed to model actual dynamical processes;
they are only meant to explore the possible consequences of two physical processes which,
in this context of superfluid turbulence at very low temperatures, are still poorly understood:
a direct cascade, leading from bigger to smaller loops, and an inverse cascade, leading from
smaller to bigger loops. Concerning the fourth step, another plausible choice could be the
invariance of the total length, instead on the invariance of the energy; this provides another
way to examine the fractal dimension which leads to DF = 1. This result follows from the
general arguments of section 2. The assumption that the total length of the vortex line is the
same at each step n means

Nnln = Nn+1ln+1. (3.1)
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Equation (2.1) implies that ln ∝ N
−1/DF
n for n high enough, so equation (3.1) becomes

Nn
(1−1/DF ) = N

(1−1/DF )

n+1 . (3.2)

Since relation (3.2) is true for every n high enough, then DF = 1. In our opinion it is an
interesting result because it shows that the fractal dimension is 1 if the whole vortex line length
is kept constant, that is if vortices themselves do not contribute to lengthening or shortening
of the total vortex length. But, as pointed out in this paper, in the low temperature limit it
seems more plausible the invariance of the total energy with respect to the invariance of the
total length.

Since the total number of vortex loops at the nth generation is Nn, the total energy stored
on the vortex loops of the nth generation will be

En = NnE
′
n (3.3)

where E′
n is the energy of the loop at the nth generation. The length of a single vortex in the

nth generation is

ln = 2πN ′
nR

′
n

√
1 +

(
Rn

R′
nN

′
n

)2

= 2πN ′
0R

′
0
rnα

βnγ

√
1 +

(
R0

N ′
0R

′

)2 (
βγ−1

rα

)2n

. (3.4)

Finally, we need to specify the energy of each loop. Of course, the energy of a loop depends
on the helical structure that wraps the unperturbed loop of average radius Rn, that is, on the
number of helical turns N ′

n or, equivalently, on the pass of helices. Unfortunately we are unable
to calculate this energy analytically. The recent work of Maggioni et al [40] shows that, even
for the simpler case of a non-fractal, single vortex filament, the numerical calculation of this
energy is difficult, as it converges very slowly. For this reason, we propose three possible
approximate scenarios for the energy E′

n of a loop at the nth generation.

(i) The first scenario assumes that E′
n is proportional to the length of the circular axis of the

helical loop:

E′
n = ρsκ

2

4π
Ln

[
log

(
8Rn

a0

)
− 1.615

]
, (3.5)

where ρs is the mass density of the superfluid component, κ is the quantum of vorticity
(κ = h/m, with h Planck’s constant and m the mass of the helium atom) and a0 is the
radius of the core of the vortices (of the order of the atomic radius) [1].

(ii) The second scenario is to assume that for large-amplitude helical turns close to each other
(R′

n � hn) the helical loop may be considered as a solenoid, and that its internal energy
E′

n is of the order of its volume, 2πRnπR′
n

2, times the density of the kinetic energy of
the superfluid induced by the polarized coil. Using for the induced velocity an expression
analogous to that for the magnetic field in a solenoid we can write for the induced velocity
vsl ≈ κ/hn and obtain

E′
n = π2ρsκ

2Rn

(
R′

n

hn

)2

. (3.6)

(iii) The third scenario is a more flexible prescription, incorporating also the features of the
helical structure. The total length of the deformed circle, for n sufficiently high, is

ln = 2πN ′
nR

′
n

√
1 +

(
hn

2πR′
n

)2

, (3.7)

with hn = Ln/N
′
n being the pass of the helices at the nth generation, which can be

interpreted as the wavelength of the Kelvin wave, whose amplitude is R′
n. We assume

6
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that the whole helical length contributes to the energy, but multiplied by a dimensionless
factor depending on the length scale, as represented, for instance, by R′

n, which modulates
the relative influence of the helical turns on the energy of the loop. Thus, instead of (3.5),
we take

E′
n = ρsκ

2

2
N ′

nR
′
n

(
R′

n

R0

)χ
√

1 +

(
hn

2πR′
n

)2 [
log

(
8R′

n

a0

)
− δ

]
, (3.8)

where δ is a constant of the order of 1.6. Here the ratio (R′
n/R0)

χ with χ > 0 ensures that
the smaller the length scale is (i.e. the smaller R′

n is), the smaller is the contribution to the
energy; if χ < 0, smaller length scales have larger contributions to the energy, and χ = 0
indicates that the energy is proportional to the loop length. Of course, more complicated
models could be assumed instead of (R′

n/R0)
χ . The actual value of χ should be obtained

from a first principles calculation of the energy of helical loops of different radii and with
different separations between successive helical turns, but, as we said before, this is very
complicated and goes beyond the simple, limited task which we set at this early stage of
investigation.

Since Nn/N0 = rn and ln/ l0 = ln/2πR0, when l0 is assumed to be 2πR0, the fractal
dimension (2.1) becomes

DF = − lim
n→∞

n log r

log
((

N ′
0R

′/R0
)
(rαn/βγn)[1 + [R0/(R′N ′

0)]
2(βγ−1/rα)2n]1/2

) . (3.9)

Note that here the limit is taken keeping in mind that, when n becomes large enough, the
radius of the loop Rn cannot be smaller, or of the same order of the vortex core radius a0. We
distinguish essentially two cases of physical interest: the long wavelength limit (hn � Rn)
and the large amplitude limit (hn � Rn), corresponding respectively to Kelvin waves whose
wavelengths are larger or smaller than their amplitudes.

Long wavelength limit (hn � R′
n or βγ−1 > rα)

In the limit of Kelvin waves with small amplitude and large wavelength, the physically most
plausible scenarios are the first (3.5) and the third (3.8).

In the first scenario (3.5), under the condition En+1 = En, leads to

[(n ln β + a)] = r

β
[((n + 1) ln β + a)], (3.10)

which is true for any value of n only if r = β needs. It follows that the condition hn � Rn,
or βγ−1 > rα can be read in terms of γ and α as γ − α > 1, and the value of the fractal
dimension can be obtained from (3.9):

DF = 1 if γ − α > 1. (3.11)

It is reasonable that DF = 1 because in this scenario the interference between neighbouring
helical turns tends to vanish.

In the third scenario, multiplying (3.8) times Nn and requiring that En+1 = En, i.e.
Nn+1E

′
n+1 = NnE

′
n, we are lead to

r(α+1)(n+1)

βγ (χ+1)(n+1)

√
1 +

(
R0

N ′
0R

′
0

)2 (
βγ−1

rα

)2(n+1)

[−(n + 1)γ log β + a]

= r(α+1)n

βγ (χ+1)n

√
1 +

(
R0

N ′
0R

′
0

)2 (
βγ−1

rα

)2n

[−nγ log β + a]. (3.12)

7
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The second term under the square root in (3.12) is dominant and the relation between r and β

becomes

r = β1+γχ . (3.13)

Substituting this relation into βγ−1/rα > 1 one gets (γ − α − αγχ − 1)/((1 + γχ)) > 0.
Using (3.4) and Nn/N0 = rn we have

DF = 1 + χγ � 1 if χ � 0. (3.14)

Note that a negative value of χ implies DF < 1, and that the value of χ cannot be less than
−1/γ > −1. The result that γ > 1 comes from the relation (γ −α−αγχ−1)/((1+γχ)) > 0.
The conclusion that DF < 1 is not physically reasonable: it would imply that the vortex tangle
becomes similar to Cantor’s dust and would violate the solenoid condition (a vortex is a closed
loop or terminates on boundaries, but here we have no boundaries).

For the sake of completeness, we also consider scenario 2 (3.6) although this expression
of the energy seem to be physically inadmissible in the long wavelength limit. The constraint
En+1 = En leads to r1+2α = β2γ−1 and γ − α − 1 > 0. Substitution into (3.9) yields

DF = 2γ − 1

2α + 1
> 1, (3.15)

(as DF − 1 is positive when γ > α + 1).

Large amplitude limit (hn � R′
n or βγ−1 < rα)

Suppose that Kelvin waves have amplitude larger than the wavelength. This means that the
helical turns which wrap loops at the nth generation must have a radius R′

n larger than their
pass hn. The most plausible assumptions for the energy seem scenarios (3.6) and (3.8).

Using (3.6) and En+1 = En we obtain[
π

(
r ′

0N
′
0

L0

)2 (
rα

βγ−1

)2n
]

= r

β

[
π

(
r ′

0N
′
0

L0

)2 (
rα

βγ−1

)2n+2
]

, (3.16)

which is valid at any generation n if r1+2α = β2γ−1. Substitution into (3.9) gives

DF = 2γ − 1

α + γ
< 1, (3.17)

provided that γ − α < 1, which, as we have already said, seems physically unplausible.
Using (3.8) we obtain again (3.12), but here with the condition

βγ (1+χ) = rα+1. (3.18)

Substitution into the inequality βγ−1/rα < 1 yields (γ − α − αγχ − 1)/(γ (1 + χ)) < 0.
Then, substituting (3.18) into (3.9), we obtain

DF = 1 + χ

1 − αχ
, (3.19)

which implies that

DF − 1

DF

= χ(1 + α)

(1 + χ)
(3.20)

making apparent that

DF � 1 if χ � 0, (3.21)

(otherwise DF < 1). The last conclusion requires −1 < χ < 0, because 0 < 1/DF <

(1 + α)/(γ (1 + χ)).

8
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Again, although scenario 1 seems to be unphysical, we remark for the sake of completeness
that the condition r = β, obtained below equation (3.10), leads to

DF = 1

γ − α
> 1 (3.22)

provided that γ − α < 1.

4. Concluding remarks

Finally, the following two comments are worth mentioning. The first is that, at sufficiently
low temperatures, the energy-conserving process that breaks or lengthens vortices does not
continue indefinitely, but terminates at sufficiently small scales, where a significant amount
of energy is dissipated as sound. The dependence of this energy radiation upon the length
scale has been studied by Vinen [24], and Kozik and Svistunov [25–27]. According to Vinen’s
analysis, sound radiation becomes relevant at length scales of the order of lmin 	 (κ3/ε)1/4,
where κ is the quantum of circulation and ε is the energy communicated to the system per unit
volume and time, which is proportional to L2. Thus, lmin is proportional to L−1/2. Thus, sound
emission limits the Kelvin wave cascade process considered here. In classical turbulence,
viscous dissipation plays a similar role, and determines the smallest scale ldiss ∼ [ν3/ε]1/4 for
which the celebrated Kolmogorov scaling is valid [34, 35].

Second, the correlation between Kelvin waves has not been considered in this simple
model; in [32], however, it has been argued that it could play a significant role in the fractal
properties; it would be interesting to explore their contribution in a more detailed model.
Our model is too simple to do so; it must be stressed that reconnections play a decisive role
in breaking bigger loops into smaller loops; without reconnections, energy and momentum
conservation would forbid this cascade [15].

In summary, we have proposed some toy models which allow us to interpret the fractal
dimension of a vortex tangle in energetic terms. Their energy is not proportional to the
vortex length—because of the mutual interference of very close parts of the vortex line—and
energy, rather than the length, is conserved in the breaking and recombination of vortices. For
example, very recent work by Maggioni et al [40] has demonstrated that for complex vortex
structures such as vortex coils and vortex knots, the energy per unit length is not constant; a
similar effect may occur on vortex filaments in superfluid turbulence. We have determined
a relation between the fractal dimension and the influence of the smaller length scales on
the total energy. If this influence is smaller than that of the bigger length scales, the fractal
dimension is higher than 1. This result can be understood in an intuitive way, because energy
restrictions do not limit the presence of many small and complicated vortex loops, which tend
to fill a proportion of space higher than a simple geometrical line. In contrast, if smaller scales
contribute considerably to the energy, energy restrictions limit the formation of these scales
and vortex loops will be relatively large and simple. Our results show that when small length
scales contribute relatively less to the energy than the long scales, the fractal dimension DF is
larger than 1. The opposite is not true; one could have a fractal dimension higher than 1, but
with an essentially linear relation between energy and length. The logarithmic dependence of
the fractal dimension on the behaviour of the energy per unit length at different scales may
allow us to obtain a reasonably physical result for DF without knowing in full detail the exact
form of the energy contribution of loops at different scales.

Another interesting result is pointed out in section 3, where we investigate what happens
if the whole vortex line length is kept invariant at each generation n, instead of the total energy.
The result is that the fractal dimension has to be 1, that is the assumption that each vortex
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does not contribute to the lengthening or shortening of the other vortices means that vortices
are not fractals.
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